Scale-free structural organization of oxygen interstitials in La2CuO4+y
نویسندگان
چکیده
منابع مشابه
Large-scale structural organization of social networks.
The characterization of large-scale structural organization of social networks is an important interdisciplinary problem. We show, by using scaling analysis and numerical computation, that the following factors are relevant for models of social networks: the correlation between friendship ties among people and the position of their social groups, as well as the correlation between the positions...
متن کاملdetermination of maximal singularity free zones in the workspace of parallel manipulator
due to the limiting workspace of parallel manipulator and regarding to finding the trajectory planning of singularity free at workspace is difficult, so finding a best solution that can develop a technique to determine the singularity-free zones in the workspace of parallel manipulators is highly important. in this thesis a simple and new technique are presented to determine the maximal singula...
15 صفحه اولInteraction of oxygen interstitials with lattice faults in Ti
Oxygen greatly affects the mechanical properties of titanium. In addition, dislocations and twin boundaries influence the plastics deformation of hexagonal close-packed metals. As part of a systematic study of defects interactions in Ti, we investigate the interactions of oxygen with ð10 12Þ twin boundaries and ð10 10Þ prism plane stacking faults. The energetics of four interstitial sites in th...
متن کاملScale-free networks from self-organization.
We show how scale-free degree distributions can emerge naturally from growing networks by using random walks for selecting vertices for attachment. This result holds for several variants of the walk algorithm and for a wide range of parameters. The growth mechanism is based on using local graph information only, so this is a process of self-organization. The standard mean-field equations are an...
متن کاملImplantation and atomic-scale investigation of self-interstitials in graphene.
Crystallographic defects play a key role in determining the properties of crystalline materials. The new class of two-dimensional materials, foremost graphene, have enabled atomically resolved studies of defects, such as vacancies,1-4 grain boundaries,(5-7) dislocations,(8,9) and foreign atom substitutions.(10-14) However, atomic resolution imaging of implanted self-interstitials has so far bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2010
ISSN: 0028-0836,1476-4687
DOI: 10.1038/nature09260